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Class 10: one-sample t-test

Prof. Jon Sprouse 
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From z-tests to t-tests
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(one sample) z-test one sample t-test

Scientific 
question

Does our sample differ from a 
population with a known mean 

and standard deviation?

Does our sample differ from a 
population with a known mean 

(but unknown SD)?

Null 
Hypothesis

The mean of the population that 
the sample comes from is equal 

to the mean of the known 
population (so, µ = µ0)

The mean of the population that 
the sample comes from is equal 

to the mean of the known 
population (so, µ = µ0)

Equation

Descriptive 
information

The z statistic tells us how much 
our sample mean differs from the 

population mean in terms of 
population SE

The t statistic tells us how much 
our sample mean differs from the 

population mean in terms of 
sample SE (as an estimate)

Null 
distribution

z =
x ̄- µ0

σx ̄
t =

x ̄- µ0

sx ̄
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Using sx ̄to estimate the population σx.̄ 

Bessel’s correction for sample variance  
(and standard deviation)

4
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Estimating population parameters  

from sample statistics

population

sample

0

200

400

600

800

150 175 200
Height (cm)

Fr
eq

ue
nc

y

mean = µ = ?

mean = x ̄= 175

variance = σ2 = ?

standard deviation = σ = ?

variance = s2 = 126

standard deviation = s = 11.2

When we have no way of measuring 
parameters directly, we can measure the 
sample statistics and use them as an 
estimate of the population parameters!



The mean is an Unbiased Estimator

An unbiased estimator is a statistic that 
does not systematically underestimate or 
overestimate the population parameter.

This means the statistic for any given 
sample has an equal likelihood of being 
higher or lower than the parameter.

The mean is an unbiased estimator.
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We can see this with a simulation. I 
selected 1000 samples of size 25 from the 
height population. I calculated the mean 
of each sample, and plotted those in this 
histogram.
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I plot the mean of the samples in dashed 
red and the mean of the population in 
black. They are identical and the 
distribution is symmetric around it!

population

1000 
sample 
means



The variance and standard deviation are 
Biased Estimators

A biased estimator is a statistic that 
systematically underestimates or 
overestimates the population parameter.

This means the statistic cannot be used to 
estimate the parameter. Over the long 
run, it will give you a biased estimate.

The variance and the standard 
deviation are biased estimators.

We can see this with a simulation. I 
selected 1000 samples of size 25 from the 
height population. I calculated the 
standard deviation of each sample, and 
plotted those in this histogram.

I plot the standard deviation of the 
samples in dashed purple and the σ of the 
population in black. The sample s 
underestimates the population σ!
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Correcting the bias in variance (and nearly 
correcting it in the standard deviation)
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To correct the bias in variances (and to mostly correct the bias in standard 
deviations), we apply something called Bessel’s correction to the equations 
when we are calculating sample statistics (but not when we are calculating 
population parameters). We simply divide by n-1 instead of n:

σ2 =
(x1 - µ)2 + (x2 - µ)2 + … + (xn - µ)2

n

s2 =
(x1 - x)̄2 + (x2 - x)̄2 + … + (xn - x)̄2

n-1

µ = population mean

x ̄= sample mean

σ =
(x1 - µ)2 + (x2 - µ)2 + … + (xn - µ)2

n

s =
(x1 - x)̄2 + (x2 - x)̄2 + … + (xn - x)̄2

n-1

µ = population mean

x ̄= sample mean
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Showing that Bessel’s correction works 
(perfectly for variance, close for SD)

We can see that Bessel’s correction works 
by applying it to the same simulation that 
we did before.

Here is the original simulation with the 
uncorrected equation for standard 
deviations.

Now we can rerun the simulation using 
the correction. The built-in function in R 
sd() applies the correction.

And what we see is that the mean of the 
corrected SDs is nearly identical to the 
population SD. This shows that the 
correction works - some sample SDs are 
above, some are below, but there is no 
bias.
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So, whenever you are using samples, use n-1
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standard 
deviation =

(x1 - mean)2 + (x2 - mean)2 + … + (xn - mean)2

n-1

sum of squares =

variance =
(x1 - mean)2 + (x2 - mean)2 + … + (xn - mean)2

n-1

(x1 - mean)2 + (x2 - mean)2 + … + (xn - mean)2



Why does Bessel’s correction work?
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One basic answer is that by making the divisor smaller (n-1), we are making 
the variance and standard deviation larger. Since the uncorrected versions are 
systematically underestimating the population parameters, we want it to be 
larger to overcome this, so this is a welcome result:

But this doesn’t answer the question of why it is n-1. Any number that is 
smaller than n would increase the standard deviation: n-2, n-3, etc.

To really answer this question we need the concept of degrees of freedom.

standard 
deviation =

(x1 - mean)2 + (x2 - mean)2 + … + (xn - mean)2

n-1

We also need degrees of freedom to understand the t-distribution, so now is a 
good time to look at that!



Degrees of Freedom
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Degrees of Freedom
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The idea of degrees of freedom was introduced way back in chapter 3 of our 
book, but we didn’t need it back then. We need it now.

One definition of degrees of freedom is the number of scores in a data set 
that can vary freely based on the amount of information you know about the 
data set.

That is a strange way of talking. What do we mean by that? Let’s use 
examples.

Example 1: If I tell you that we have a sample with 5 scores. But we know 
nothing else about the sample. How many degrees of freedom 
does the sample have?

Answer: It has 5 degrees of freedom because each of the 5 scores could 
be anything. They are each free to vary. We have no 
information that would constrain them.

__    __    __    __    __



Degrees of Freedom
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Example 2: If I tell you that we have a sample with 5 scores and the mean 
is 3. How many degrees of freedom does the sample have?

Answer: It has 4 degrees of freedom because only the first four scores 
can freely vary. After the first 4 vary, the 5th must be 
whatever number is necessary to create a mean of 3.

__    __    __    __    __ mean = 3

__    __    __    __    __ mean = 31 2 3 4 5

__    __    __    __    __ mean = 32 2 2 2 7

__    __    __    __    __ mean = 310 0 20 0 -15

__    __    __    __    __ mean = 3.41 2 3 4 7

Notice that if 
you try to 
make the 5th 
free to vary, 
you won’t get 
the right mean!



Degrees of Freedom
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Example 3: If I tell you that we have a sample with 5 scores and the mean 
is 3 and the standard deviation is 1.41. How many degrees of 
freedom does the sample have?

Answer: It has 3 degrees of freedom because only the first four scores 
can freely vary. After the first 3 vary, the 4th and 5th must be 
whatever numbers are necessary to create a mean of 3 and a 
standard deviation of 1.41.

__    __    __    __    __ mean = 3, sd = 1.41

__    __    __    __    __ mean = 3, sd = 1.411 2 3 4 5

__    __    __    __    __ mean = 3, sd = 3.692 2 2 10 -1

Notice that if you let 4th vary, the 5th can be chosen to get the 
mean correct, but it can’t be chosen to get the standard 
deviation correct. This means that once you know the standard 
deviation, you lose 2 degrees of freedom



Degrees of Freedom
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The general rule is that you lose 1 degree of freedom for every piece of 
information you know about a sample.

When you lose 1 degree of freedom, say because you already know the mean, 
your degrees of freedom are n-1.

__    __    __    __    __

__    __    __    __    __ mean = 3, sd = 1.41

df=5

__    __    __    __    __ mean = 3df=4

df=3

The maximum number of degrees of freedom is the sample size. So it is n.

If you lose 2 degrees of freedom, say because you already know the mean and 
standard deviation, your degrees of freedom are n-2.

(Notice that you have to know the mean to calculate the standard deviation, so 
you will always know 2 pieces of information if you know the standard 
deviation.)



df in Bessel’s correction
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Let’s look again at Bessel’s correction. We divide by n-1. You will now 
recognize that as the number of degrees of freedom when the mean is already 
known:

And this makes some sense, in that the mean is calculated from the sample 
first in order to then calculate the variance or standard deviation. So one 
degree of freedom has been lost when you start to calculate the standard 
deviation.  

(But, this is not a complete answer. This just shows you why you need to make 
the variance larger, and why n-1 is a logical choice for doing that. The 
mathematical proof that shows that Bessel’s correction works with n-1 is 
beyond my knowledge… but you can see it on the internet if you are curious!)

standard 
deviation =

(x1 - mean)2 + (x2 - mean)2 + … + (xn - mean)2

n-1



The t distribution
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From z-tests to t-tests
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(one sample) z-test one sample t-test

Scientific 
question

Does our sample differ from a 
population with a known mean 

and standard deviation?

Does our sample differ from a 
population with a known mean 

(but unknown SD)?

Null 
Hypothesis

The mean of the population that 
the sample comes from is equal 

to the mean of the known 
population (so, µ = µ0)

The mean of the population that 
the sample comes from is equal 

to the mean of the known 
population (so, µ = µ0)

Equation

Descriptive 
information

The z statistic tells us how much 
our sample mean differs from the 

population mean in terms of 
population SE

The t statistic tells us how much 
our sample mean differs from the 

population mean in terms of 
sample SE (as an estimate)

Null 
distribution

z =
x ̄- µ0

σx ̄
t =

x ̄- µ0
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Remember the mathematical steps of NHT
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The mathematical part of NHT has three steps:

Run an experiment to collect the observed data. Calculate a statistic from 
it, like the mean or a z-score.

1.

Assume that the null hypothesis is true, and generate all possible data 
sets that could arise (using the same sample size as your experiment). 
We summarize it as a distribution called the null distribution.

2.

data1 
data2 
data3 
…

Data 
Generator

(assumes H0)

Look up the probability of the observed data 
or data more extreme in the null 
distribution. This is a conditional probability.

3.

P(data | H0) =
observed data
generated data
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We need to figure this out for the t-distribution
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The mathematical part of NHT has three steps:

Run an experiment to collect the observed data. Calculate a statistic from 
it, in this case a t.

1.

Assume that the null hypothesis is true, and generate all possible data 
sets that could arise (using the same sample size as your experiment). 
We summarize it as a distribution called the null distribution.

2.

data1 
data2 
data3 
…

Data 
Generator

(assumes H0)

Look up the probability of the observed data 
or data more extreme in the null 
distribution. This is a conditional probability.

3.

P(data | H0) =
observed data
generated data

null distribution

?

?



Let’s empirically simulate the t distribution for 
experiments of different sample sizes
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William Sealy Gossett developed the t-distribution by going out and running 
experiments of different sizes and empirically determining the distribution.
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We can do it faster with a simulation. Here is a 
population of heights. We can repeatedly sample from 
it 100,000 times for three sample sizes: 5, 10, and 25.

We can calculate a t for each of the 100,000 samples, 
and plot the distribution of those t values.

µ = 175 
σ = 10



We see small differences based on df
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The t distribution is a family of distributions. The family is determined by the 
degrees of freedom, here n-1 (because the mean was used in calculating t).

0

1000

2000

3000

4000

−4 −2 0 2 4
t for a sample 5

Fr
eq

ue
nc

y

0

1000

2000

3000

4000

−4 −2 0 2 4
t for a sample 10

Fr
eq

ue
nc

y

0

1000

2000

3000

4000

−4 −2 0 2 4
t for a sample 25

Fr
eq

ue
nc

y

There is a difference in the tails of the distribution: lower df leads to a fatter tail; 
higher df leads to a thinner tail.

As df grows (so, as the sample size gets bigger) the t distribution approaches 
normal — it approaches the z distribution.

There is also a difference in the peaks, but it is hard to see here: as df grows, 
the peak gets higher (the fat tails shift to a more peaky peak).

df = 4 df = 9 df = 24
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The analytic t distribution

24

Fisher helped Gossett calculate an analytic t distribution. Using the analytic 
form can help us see the differences in the tails a bit more clearly.

z is black 
df = 24 (sample size 25) 
df = 9 (sample size 10) 
df = 4 (sample size 5) 

I’ll also plot them on top of each other to highlight the differences: as df 
increases, the distribution approaches a z distribution.



What is the practical difference between a t 
distribution and z distribution?
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Remember the difference between the two is in the tails. The t distribution has 
fatter tails.

The practical consequence of this is that you will need a larger critical t 
value than a critical z value to reach a p-value of .05.

This is because that fatter tail means more extreme observations happen with 
a t distribution. This makes logical sense - these are small sample 
experiments, so more extreme things can happen by chance.
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df=4 (sample size 5) 
critical t=2.13 
for p=.05

critical z=1.96 
for p=.05



Writing up t-test results
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“Although the mean hourly fee for our sample of current psychotherapists was 
considerably higher (M = $72, SD = 22.5) than the 1960 population mean (µ 
= $63, in current dollars), this difference only approached statistical 
significance, t(24) = 2.00, p = .06.”

When you write up the results, you need to tell readers the mean, standard 
deviation, t-statistic, the degrees of freedom, and of course the p-value:



If we saw a one-sample t-test on homework or 
an exam
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Imagine that we have a new intelligence test. We don’t 
know the standard deviation of the test, but we want 
to know if our sample scored higher than the expected 
mean of 100. 

Then plug in our numbers:

t =
x ̄- µ
sx ̄

… and remember:
n

sx ̄=
s

t =
106 - 100

2.5
… and remember:

25
sx ̄=

12.5

We’d first remember our formula:

72  93  93  96  98  
99 100 101 101 102 
103 103 104 105 
107 109 110 113 
115 118 119 122 
125 126 127

scores:

x ̄= 106 
s = 12.5

t = 2.4



If we saw this on homework or an exam
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t = 2.4

Then we’d look up our t in Table A2 
in the book, or use pt() in R:

72  93  93  96  98  
99 100 101 101 102 
103 103 104 105 
107 109 110 113 
115 118 119 122 
125 126 127

scores:

p =.012

df t for p<.05

Imagine that we have a new intelligence test. We don’t 
know the standard deviation of the test, but we want 
to know if our sample scored higher than the expected 
mean of 100. 

x ̄= 106 
s = 12.5

Table A2 only tells you the critical t 
for the df:

For the pt() function, you need to 
specific the degrees of freedom:


